Lectures on Marked Length Spectrum Rigidity (preliminary Version)

نویسنده

  • A. WILKINSON
چکیده

Let M be a closed Riemannian manifold whose sectional curvatures are all negative, and denote by C the set of free homotopy classes of closed curves in M . Negative curvature implies that in each free homotopy class, there is a unique closed geodesic. This defines a marked length spectrum function ` : C → R>0 which assigns to the class g the length `(g) of this closed geodesic. Burns and Katok asked whether the function ` determines M , up to isometry [7]. This question remains open in general, but has been solved completely for surfaces by Otal [27] and independently slightly later, but in greater generality by Croke [8]. In these notes, I’ll explain in several steps a proof of this marked length spectrum rigidity for negatively curved surfaces: Theorem 0.1 (Otal). Let S and S′ be closed, negatively curved surfaces with the same marked length spectrum. Then S is isometric to S′.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Marked Length Spectrum Rigidity in Nonpositive Curvature with Singularities

Combining several previously known arguments, we prove marked length spectrum rigidity for surfaces with nonpositively curved Riemannian metrics away from a finite set of cone-type singularities with cone angles > 2π. With an additional condition, we can weaken the requirement on one metric to ‘no conjugate points.’

متن کامل

Marked Length Rigidity for Fuchsian Buildings

We consider finite 2-complexes X that arise as quotients of Fuchsian buildings by subgroups of the combinatorial automorphism group, which we assume act freely and cocompactly. We show that locally CAT(-1) metrics on X which are piecewise hyperbolic, and satisfy a natural non-singularity condition at vertices are marked length spectrum rigid within certain classes of negatively curved, piecewis...

متن کامل

A Brief Summary of Otal’s Proof of Marked Length Spectrum Rigidity

We outline Otal’s proof of marked length spectrum rigidity for negatively curved surfaces. We omit all technical details, and refer the interested reader to the original [Ota90] or the course notes [Wil] for details, and to [Cro90] for different approach. (Actually the course notes [Wil] combine the approaches in [Ota90,Cro90].) The author thanks Amie Wilkinson for explaining this proof to him....

متن کامل

Marked length rigidity for one dimensional spaces

In a compact geodesic metric space of topological dimension one, the minimal length of a loop in a free homotopy class is well-defined, and provides a function l : π1(X) −→ R+ ∪ ∞ (the value ∞ being assigned to loops which are not freely homotopic to any rectifiable loops). This function is the marked length spectrum. We introduce a subset Conv(X), which is the union of all non-constant minimal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012